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The symmetry of helical structures and their diffraction patterns is discussed, and a list is given of 
the line groups for enantiomorphic helical structures. The main body of the paper concerns two 
special kinds of projection of a helical structure -the radial projection and the helical projection. 
It is shown that these projections provide a very convenient way of thinking about a helical struc- 
ture and analysing its diffraction pattern. The theory of these projections is given in detail, and 
their uses are discussed. 

Introduction 
Since it was first developed some years ago by Cocb- 

ran, Crick & Vand (1952 ; hereafter referred to as C. C.V. 
for short) and by Stokes (unpublished), the theory of 
diffraction by a helical structure has been of great 
value in the analysis of the structure of many sub- 
stances, notably the synthetic polypeptides (for ex- 
ample Co&ran & Crick, 1952), deoxyribonucleic acid 
(for example Wilkins, Stokes 8s Wilson, 1953; Frank- 
lin & Gosling, 1953), tobacco mosaic virus (for ex- 
ample Watson, 1954; Franklin & Klug, 1956) and 
collagen (for example Cohen & Bear, 1953; Cowan, 
North & Randall, 1953), to name only some of the 
most important. 

In essence the results of C.C.V. contain the full 
diffraction theory, in much the same way as three- 
dimensional Fourier series analysis contains the theory 
of diffraction by a crystal lattice. But, just as in the 
latter there have been found many special techniques 
for considering the problem, so will there also be other 
ways of considering helical diffraction theory which 
are, or may prove to be, useful in practice. It is the 
purpose of this paper to give some of these ways of 
thinking about a helical structure. 

The type of structure which we shall consider is one 
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which is infinite in one special direction, which we 
shall call the ‘fibre direction’, and finite in all direc- 
tions perpendicular to this. We shall consider that the 
structure repeats exactly after a distance c in the fibre 
direction, since any real structure can be made to 
approximate to this as closely as we please. Thus, the 
Fourier transform of such a structure will fall on to 
disorete layer planes, but will be continuous on each 
layer plane. Naturally, in actual specimens, the ma- 
terial may form a three-dimensional lattice, but the 
effect of this is easily allowed for-for example, by 
appropriate samplings of the semi-continuous Fourier 
transform. 

Before embarking on the algebraical treatment we 
shall consider certain general properties of structures 
of this kind, including special projections and matters 
of symmetry. 

1.1. Symmetry and special projections 
Let us first consider the symmetry elements, which as 
usual must form a group. Then for a structure of this 
type-that is, infinite in one direction only-there will 
be at least one infinite straight line, the ‘fibre axis’, 
which every symmetry element of the group will turn 
into itself. We shall take this particular line (it is 
usually unique) as the z axis. Notice that the distance 
of any point from this line is unaltered by the opera- 
tion of any symmetry element. Thus all the points 
produced by the operation of all the possible sym- 
metry operations upon one chosen point will be equi- 
distant from the z axis. That is, they will lie on a 
cylindrical sheet co-axial with the z axis. 

Now consider two particular projections. The first is 
the projection of the structure parallel to the z axis. 
This will have the symmetry of one of the two- 
dimensional plane point groups, though naturally 
without the restrictions usually imposed by crystallo- 
graphers. These point groups are of two kinds: the 
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cyclic point-groups, CN, which have only an N-fold 
rotation axis, where N is any integer (not merely 
1,2,3,4 and 6); and the point groups, C,-,, which 
have in addition mirror reflexion across radial lines, 
there being N such lines. 

The second kind of projection is the more useful of 
the two for discussion of the symmetry. Consider a 
cylindrical surface which is co-axial with the s axis. 
Project the structure on to this surface along lines 
starting from the z axis and perpendicular to it-that 
is, along radial lines. We shall call the result a ‘radial 
projection’. However, we shall usually think of it in 
a slightly modified form, Imagine such a cylindrical 
surface cut along a straight line, parallel to the z axis, 
and then opened out flat,* and imagine that identical 
sheets of this type are laid side by side, in register, 
till the plane pattern extends to infinity in a direction 
perpendicular to the 2 axis as well a8 parallel to it. 
It is this infinite two-dimensional plane pattern-the 
reiterated radial projection-that we shall refer to 
simply as the radial projection. It is clear that it will 
have the symmetry of one of the two-dimensional 
plane groups. These plane groups are listed in the 
International Tables (1952, pp. 58-72). There are 17 
of them, but our rule that any symmetry element must 
leave the z axis unmoved eliminates the last eight of 
them. Of the remaining nine, the first two axe enantio- 
morphous and the other seven are non-enantiomor- 
phous . 

We shall not consider the non-enantiomorphous 
ones further, since they are only rarely required. The 
vast majority of helical structures are necessarily 
enantiomorphous, since they are displayed by ma- 
terials which contain only one optical isomer. More- 
over, detailed examination of the non-enantiomor- 
phous groups shows that a helical molecule is very 
unlikely to display such symmetries, for a variety of 
reasons. 

Since the radial projections of the enantiomorphous 
groups are of only two kinds, namely pl and ~21211, 
(International Tables, 1952, p. 58) the enumeration of 
the possible groups is simple. The only symmetry 
operations are : 

t-a translation parallel to the z axis. 
r-a rotation of &z/N radians about the z axis, where 

INI is any positive integer greater than one. 
s-a screw displacement ; that is, a translation parallel 

to z together with a rotation of 2n/M radians about 
the z axis, where we have artificially restricted M 
to being a rational number written u/t in later sec- 
tions (also }MI + 1). 

2-a twofold rotation about a line passing through the 
z axis and perpendicular to it. 

- 
* If one wishes to distinguish between left-handed and right- 

handed helices then it is advisable to adhere to a fixed con- 
vention, say, that the cylindrical surface is opened out with 
the inside face upwards. The basic helix in Fig. 1 would then 
represent a right-handed helix. 

It turns out that, omitting the case where there is 
no symmetry whatsoever (not even a translation), 
there are eight possible combinations of these sym- 
metry elements. These are obtained by choosing 

(a) either a translation (t) or a screw axis (s); 
(b) either a parallel N-fold rotation axis (r), or not; 
(c) either a perpendicular dyad axis (2), or not. 

All combinations of these three choices are possible, 
giving the eight cases set out in Table 1. We tentatively 

Table 1. The eight enantiomorphic line groups 
Proposed symbol t t2 tr tr2 s s2 sr sr2 
Position of z axis Non-U Non-U U U U U U U 
Minimum number 

of asymmetric 1 2 N 2N 1 2 N 2N 
chains 

U = unique. Non-U = not unique. 
N refers to the N-fold parallel rotation axis. 

suggest the nomenclature indicated above, putting 
the 2, when it occurs, at the end. The symbol t could 
be omitted but is included for clarity. 

Naturally the ones that will concern us most are the 
last four, since these apply to truly helical structures, 
whereas the first four could more aptly be called 
cylindrical. In place of the number of asymmetric 
units in the repeat, which depends on the particular 
screw axis involved, we may usefully specify the 
‘minimum number of asymmetric chains’. This can be 
defined as follows. Let the line group be represented 
by a discrete number of infinite continuous lines in 
general positions, that is, not passing through a sym- 
metry axis. What is the minimum number possible 2 
The answers are included in the table. Note that the 
actual number of chemical chains in a structure may 
be a multiple of this minimum number. 

The first four line groups can usefully be regarded as 
special cases of the last four in which the angle of 
rotation of the screw axis has become zero. Thus in 
isolated fibrous molecules we should expect them to 
occur only very occasionally. In an assembly of 
fibrous molecules they may perhaps occur more often 
because of interactions between molecules, but even 
then they may be rather rare. 

We note briefly that the symmetry suggested for the 
structure of deoxyribonucleic acid (DNA) is 92 
(Watson & Crick, 1953), wh.iIe that of the proposed 
structure of polyadenylic acid (see Watson, 1957) is 
ST, N = 2. No case of sr2 has so far been reported. 

1.2. The effects of symmetry elements on the 
Fourier transform 

We shall adhere as far as possible to the notation in 
C.C.V.; (r, cp, z) and (R, w, t) are cylindrical co- 
ordinates in real and reciprocal space respectively. 
Consider first the simplest helical line groups, s, 
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without rotation axes of either kind. We have re- 
stricted ourselves to cases where there is an exact 
repeat after a distance c in the z direction. Thus the 
fundamental parameters of the helix, the translation 
p and the rotation 2np/P are such that the ratio P/p 
can be expressed as a rational fraction u/t, where u 
and t are integer. (For the effect of a departure from 
an exact integer ratio see C.C.V. and Franklin & Klug 
(1955).) Thus we shall have up = tP = c. In other 
words there are u asymmetric unite of the structure 
distributed evenly along exactly t turns of the barric 
helix. Note that t,his is not necessarily a physical 
description of the structure; it corresponds to a 
particular choice of the asymmetric unit, and this is 
by no means unique, as will be familiar to crystallo- 
graphers. 

The structure factor per asymmetric unit is for the 
Zth layer-line (see C.C.V.) 

x exp i [I 23212, 
n(yr+*Z)-nqj+T 

11 
* (I)* 

For any one atom there is a summation over the orders 
n of Bessel functions determined by the selection rule 

1= tn+urn ) (2) 
and there is a further summation over all the atoms 
in the asymmetric unit, their co-ordinates being 
rf, vi3 zi * 

This result obtained by C. C.V. for helical structures 
is essentially a special case of the theory of Fourier 
transforms in cylindrical co-ordinates for (non-helical) 
structures periodic in z. The Fourier transform of such 
general structures will be finite only on a set of layer 
planes, on each of which the scattered amplitude will 
be of the form 

F(R, y, f) = 2 A,(R) exp [in(y+fd] , 
tl=-a, 

where 

An(R) = sss 
e (r, p4 J, PnW 

x exp [i(-rup+fnZz/c)J~drd~dz , 

or an analogous expression for the case of discrete 
atoms. This result is perfectly general. However, if 
the structure is helical there is a further rotational 
periodicity, linearly related to the translational perio- 
dicity in z. This has the effect of making many of the 
Bessel terms systematically zero, and only those 
obeying a relation between n and I can be finite. Thus 
we see that it is the seleotion rule that is the true 
characteristic of a helical structure, the appearance of 
Bessel functions in the theory being due to the use of 
cylindrical co-ordinates. This point of view may help 

* This equation haa been derived for a right-handed helix. 
In the case of a left-handed heIix n must be replaced by --n 
in equations (1) and (2). 

to clarify the treatment of some of the problems con- 
sidered later in this paper. 

We must now consider the other helical line groups; 
in doing so we shall adhere to the notation already 
employed. This causes no difficulty except for those 
rare cases where the N-fold parallel rotation axis 
reduces the length of the true crystallographic repeat 
because N is a factor of u. For example if there were 
an 8-fold screw axis and a e-fold parallel rotation axis 
the crystallographic repeat would be ac. For con- 
sistency in the algebra we shall, in such cases, use c 
to mean not the true repeat but the repeat the struc- 
ture would have if the parallel rotation axis were 
absent. 

The effect of the rotation axes on the general for- 
mula for the structure factors is easy to see. An N-fold 
parallel rotation axis makes all Bessel function contri- 
butions zero unless their order, n, is an integral mul- 
tiple of N, so that this restriction becomes an addi- 
tional selection rule. 

A 2-fold perpendicular axis, parallel to the line 
e, = 0, causes equation (1) to be replaced by 

F(R, y, l/c) =2’22f~J,PnRr~) 
f n 

( 2& 
x co8 -nqj+ -2 

C 1 
exp in(y+I4, (3) 

where the sum goes over one asymmetric unit as be- 
fore. Thus when ly = &in all the structure factors 
are real, which is not surprising since this is the plane 
of the reciprocal lattice perpendicular to the dyad. 
Moreover, the phase of the contribution of any par- 
ticular Bessel function varies in a predictable manner 
with y, since it depends only on the value of n, and 
not on the atomic parameters, apart from an ambiguity 
of R due to the ambiguity of the sign of the amplitude 
at y = -&L. 

The symmetry of the Patterson function and of the 
intensity distribution in the reciprocal lattice (which 
are of course Fourier transforms of each other) follow 
the usual rules. That is, the u-fold screw axis in the 
real structure wili be replaced in the Patterson by a 
u-fold rotation axis; the perpendicular dyads will, in 
the Patterson, all pass through the origin and a centre 
of symmetry will be added, so that mirror planes will 
be generated perpendicular to each even rotation axis. 
If U is the lowest common multiple of u (from the 
u-fold screw axis) and N (from the N-fold parallel 
rotation axis) then the net rotation axis of the Patter- 
son is U-fold. The operation of the selection rules 
makes the difference between the orders of successive 
Bessel functions on the same layer line equal to U. 

It is instructive to consider how the intensity varies 
as one travels round one layer plane at a constant 
distance from the 5 axis. This is most usefully discussed 
in terms of the number of Bessel functions contribut- 
ing to that part of the reciprocal lattice. As pointed 
out in C.C.V., this number increases as R increases, 
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though the effective number for any value of R varies 
from layer line to layer line. 

If only one Bessel function contributes, as is usually 
the case near the meridian, it is easy to see from 
equation (1) that the intensity is constant, whereas 
the phase rotates at a uniform rate, making 12 com- 
plete revolutions for one circuit of the C axis (the 
Bessel function concerned being J,). 

If two Bessel functions contribute, the intensity will 
vary sinusoidally, going through U cycles in one com- 
plete traverse of the reciprocal lattice. In general, sz? 
pointed out, by Stokes (1955), we may express the 
intensity as a Fourier series with respect to y : 

It& y, UC) 
= A,+2A,cos (Uy+yI)+2A,cos (2Uv++Q+. . . . (4) 

(R constant, l/c constant). 

If there are perpendicular dyads we can choose the 
origin so that qul = pz = lyI = . . . = 0. 

It is easy to show that the highest term needed in 
this expansion at a particular value of R depends on 
the maximum difference in the orders of the con- 
tributing Bessel functions (with due allowance for 
sign of the orders), the number of cosine terms re- 
quired being this difference divided by U. Thus 
usually the number of terms will equal the number of 
Bessel functions contributing. The only systematic 
exception to this occurs on the equator when U is odd, 
since in such a case, because of the centre of symmetry 
of the intensity distribution, the odd terms’in the 
above expansion all vanish (A, = A, = A, = . . . = 0). 

1.3. Fibre diagrams 
If crystal reflexions are present, a fibre diagram 
gives the average intensity for a finite set of values 
of -those values at which reciprocal-lattice points 
occur. But, if the fibre diagram consists of layer-line 
streaks only, then it gives the intensity averaged over 
all values of y. It is a matter of some practical interest 
to obtain this average value for any proposed struc- 
ture. 

If the structure factors have been computed it is 
easy to show (Franklin & Klug, 1955) that the simplest 
procedure is to calculate the intensity due to each 
Bessel function, taken separately, and then add these 
intensities together (see equation (31) below). This 
gives correctly the average intensity over all values 
of y). However, if the structure is being studied by 
means of optical transforms the different Bessel func- 
tions on a given layer line cannot easily be separated, 
and an alternative procedure should be followed. The 
reciprocal lattice is sampled in a small number of 
planes of constant w (i.e. one makes optical transforms 
of the corresponding projections), and the intensities 
so obtained are averaged. This problem haa been con- 
sidered by Stokes (1955) but we shall treat it here in 

a slightly different manner by fixing attention on only 
one particular layer line at a time. 

The way the intensity varies with ‘y has already 
been set out in equation (4). It is clear that the 
number of samples, equally spaced in p, should equal 
the number of terms appearing in equation (4). Thus, 
normally, if three Bessel functions are contributing to 
the part of the layer line being considered, three 
samples, spaced at intervals of y = +(2n/U), will 
average to the required average, A,. 

In the exceptional case mentioned earlier, which 
occurs on the equator when U is odd, it is possible to 
take rather fewer samples. It is easy to see from 
equation (1) that the number of samples can be equal 
to the number of Bessel functions of positiae order 
(including zero) if the angular spacing between the 
samples is the appropriate sub-multiple of 2n/2U 
rather than of 2n/U. However the general rule: 

‘a true average is obtained if the number of samples, 
uniformly spaced in the angular repeat of 2njU, 
equals the number of contributing Bessel functions’, 

is always true. In using this rule any Bessel function 
which is fortuitously absent within the sequence of 
Bessel functions should be counted as if it were present. 

It is useful to remember that, since one normally 
sees both halves of an optical transform, a single 
optical transform will sample reciprocal space at 
points spaced y.~ = z apart. If U  is odd the right- 
and left-hand sides of the optical transform may be 
different, except on the equator where the intensity 
at two such points is necessarily the same. 

For structures with perpendicular dyads the in- 
tensity in any plane perpendicular to one of the dyads 
will be at a maximum or a minimum value as far as 
the variation with respect to y is concerned. In regions 
where only two Bessel functions (whose orders differ 
by U) are contributing, a single sample at an angular 
distance of f t(27cjZJ) from one of these positions w-ill 
give the average intensity. 

11.1. Reciprocal relations between the (n, 2) plot 
and the helix net 

In this section we shall discuss the radial projection 
already described (0 1.1). We shall first consider the 
case in which there is only one atom in the asymmetric 
unit; then the case where there are several atoms in 
the asymmetric unit, but all at, the same radius. This 
enables one to see in a simple way the relationship 
between the radial projection and the intensities of the 
diffraction pattern of the structure. Finally we shall 
discuss the general case in which atoms lie at several 
different radii. 

(a) One atom in the asymmetric unit 
An example of the reiterated radial projection 

(described in $1.1) is shown in Fig. 1, which represents 
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Fig. 1. The helix net (or radial projection) for a hypothetical 
case in which the axial repeat contains 10 units in 3 turns 
of the basic helix. 

a helix with IO asymmetric unite in 3 turns. Bear 
(1955) has called a pattern of this kind a helix net, 
and we propose calling the paints of the net helical 
net points. 

The Fourier transform of this two-dimensional 
pattern will clearly be the net pattern reciprocal to 
Fig. 1, as shown in Fig. 2 (a). However, instead of 
labelling the axes of this reciprocal net in reciprocal- 
lattice units, we have marked the horizontal axis ‘n’ 
and the vertical axis ‘l’, so that each point in Fig.2(a) 
can be characterized by a pair of integers (n, I). It is 
easy to see from the selection rule of equation (2) 
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that if the point (n, 2) is present in Fig. .2(a) it implies 
that the Bessel function, J,,, will occur in the diffrac- 
tion pattern of this helical structure on the lth layer 
line. In other words, Fig. 2(a) expresses geometrically 
the selection rule for Bessel functions. To bring this 
out more clearly we have included Fig. Z(b), in which 
lines are drawn joining up all the points having the 
same value of m  (see equation (2)). 

Now consider a particular point (n, 2) in the r_e- 
ciprocal lattice shown in Fig. Z(a), for example (2, 4). 
This corresponds in the real two-dimensional space of 
Fig. 1 to a set of sinusoidal density waves, A very 
simple and rapid way of finding the direction of these 
waves (defined, for example, as the line paralZe1 to the 
zero lines of the wave) is shown in Fig. 3. This is 
simply Fig. 1, but with the horizontal axis labelled I 
(backwards) and the vertical axis labelled n. Alter- 
natively, it can be regarded as Fig. 2(a) (on some 
suitable scale) turned 90” anticlockwise. Then the line 
joining the origin to, say, the point (2,X) in Fig. 3 ,& 
parallel to the wave corresponding to the point (2, 4) 
in reciprocal space. The spacing of the wave can be 
found by noting that the (n, I) set of waves makes n 
intercepts along the horizontal edge and 1 intercepts 
along the vertical edge of the basic rectangle of Fig. 1. 
Also note that in three dimensions n gives the number 
of helical lines (chains) necessary to cover all the helix 
net points, except when n and 1 have a common factor, 

m-4 3 2 1 O-1 -2 -3 

12-l 

10 

8 

~~~~~~~ 

6 

4 

2 

-12 -8 -4 4 8 12---* n 

- P) 
Fig. 2. (a) The net reciprocal to that of Fig. 1, read aa an (n, I) plot. 

(a) The (n, 2) plot with the various ‘branches’ of the diffraction pattern labelled by the values of m. 
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Big. 3. Part of the radial projection of the example shown in Pig. 1. Each line is the projection of one of the continuous helices 
underlying the helii net, and is labelled with the appropriate pair of integers (n, I). (The discussion in the text shows that 
n and 1 play a role analogous to Miller indices.) 

If we fix an origin and assign to each net point a horizontal co-ordinate I and a vertical co-ordinate rz, as has been done 
in the figure, then the labelling of the continuous helices follows automatically. 

when the number is equal to n divided by this factor. 
These rather obvious points are useful when consider- 
ing the more complicated cases of radial projections 
(see below). 

The other helical line groups can easily be dealt 
with. The existence of a parallel N-fold rotation axis 
means that the projection of the structure corresponds 
to N repeats in the horizontal direction of the infinite 
net shown in Fig. 1. The scale of n in Figs. 2 and 3 
must correspondingly be multiplied by N, without in 
any way changing the pattern of points. 

The existence of a perpendicular dyad implies that 
there will be two atoms, related by tbe dyad, at each 
net point in Fig. 1. However, we can retain the above 
description if we place the single atom on the dyad 
axis. The case when the atoms are not on the dyad is 
best considered as a special example of that treated 
in the next sub-section (ZI). 

(b) More than one atom in the aqnametric unit 
It is clear that there is a rather intimate geometrical 

relationship between the real net of Fig. 1 and the 
reciprocal net of Fig. 2. We shall now show that for 
the case in which all the atoms lie at one radius this 
relationship extends to the intensity distribution. As 
usual, we consider first the simplest helical line 
group, s. 

Let all the atoms lie at radius rO. We construct the 
radial projection as before, calling the co-ordinates of 
Fig. 1 (2, Z) such that x5 = -pjra and zj = zj. An 
example, with three atoms in the asymmetric unit, 
is shown in Fig. 4. The Fourier components of the 
radial projection will be 

F(h,Z) --- ffi exp[2ni(?+:)] , 1 (5~) 

where a = 2nr,,. This has considerable similarity to 
equation (1). To bring this out more clearly we write 

J,@nRr,) exp [Wy+fn)] = R,(R,y) . 

Then, since B, is independent of j, we can write 
equation (1) for this case as 

Fig. 4. Radial projection of a lo-unit 3-turn helix with 3 
atoms in the asymmetric unit. The basic helix is shown aa 
a full line and the ‘helical net points’ as dots. The atoms are 
shown &8 circles. 

The projected co-ordinates q’ are for use in Fig. 5. 

where 

(5b) 

Thus the whole diffraction pattern of the helical 
structure can be characterized by a set of complex 
numbers, T,, , which we can plot at the points of a 
two-dimensional lattice, as in Fig. 2, with rectangular 
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co-ordinates n and 1 (strictly n/a and Z/G). Identifying 
n and h in equations (5~) and (5c), we see that the 
T,, array is nothing but the weighted reciprocal 
lattice of the two-dimensional radial ywojection of the 
helical structure. This relationship was first pointed 
out by Crick (1953). 

The advantage of this way of looking at the struc- 
ture is that we can quickly estimate from the two- 
dimensional radial projection (Fig. 4) which of its 
Fourier components are strong and which weak (by 
using Bragg-Lipson charts, for example, in which 
case Fig. 3 enables us to construct the correct chart 
for any particular Fourier component very quickly). 
This tells us immediately which Bessel terms will be 
strong and which weak. In short a radial projection 
is a convenient way of estimating the sum of the 
phase factors in equation (1). 

The other helical line groups present no difficulty. 
The cases where there is an N-fold parallel rotation 
axis is exactly as in the last section. The effect of 
perpendicular dyads is to put a centre of symmetry 
into the radial projection, thus making the numbers 
T,,.l real rather than complex. 

(c) Atom-s at various radii 
When atoms are not all at the same radius, the 

simple result given above will not hold, since we can- 
not perform the factorization in equation (5b). The 
contribution of one Bessel function of order n to the 
scattering amplitude on the layer line 1 is now repre- 
sented by a complex number G,,,(R) whose modulus 
and phase vary with R, where 

G,,,(R) = zfiJn(2rrRrj)exp 
2nlz 

i(-nvi+-$ ’ (6) 
i 

In this notation the scattered amplitude on a layer 
line 1 is given by 

F(R y, 43 = 2 G,J(R) exp [%y+tn)] I (7) 
n 

where the sum is, of course, subject to the usual 
selection rule (2). 

We should like to have a convenient way of estimat- 
ing the contribution of the various atoms to G,,,(R). 
Now each atom contributes a Bessel function mul- 
tiplied by a phase factor involving only its v and z 
co-ordinates. The phase factor is the same form for all 
atoms, and is essentially scale-free, not depending on 
the radius. It can thus be conveniently estimated from 
a single diagram, namely the radial projection (on to 
a cylinder of radius T& and it is this which gives the 
radial projection its value. When considering any 
particular Bessel function, order n, at a radius in 
reciprocal space R, we regard each atom in the radial 
projection as having a weight J,(2nRri). We can then 
estimate the phase factor in exactly the way de- 
scribed for (unweighted) atoms in the last sub-section 
(b); for example, by using Bragg-Lipson charts. 

Moreover the same diagram will do for all values of 
n and R we wish to consider. 

The radial projection, therefore, is the most con- 
venient way of representing the structure in order to 
make quick estimates of its diffraction pattern. Its 
use was first pointed out by Wyckoff (1955). 

11.2. Net ambiguities and connection 
ambiguities 

Bear (1955) has discussed the relationship between 
the real and reciprocal nets and has described ‘net 
ambiguities’ and ‘connection ambiguities’. His net 
ambiguities correspond to the ambiguity in deciding 
the correct line group from the diffraction data. His 
connection ambiguities correspond roughly to the 
usual ambiguity in drawing the unit cell of Fig. 1. 
In particular the helix net of a fibrous structure does 
not in itself tell how the chemical chains of the struc- 
ture connect up the points of the helix net, let alone 
how many separate chemical chains the structure 
possesses. 

However, if the atoms of a structure are concen- 
trated along a chain direction it is sometimes possible, 
by using the methods just described, to determine the 
run of the chains, and hence the number of chains, 
from the order n of the strongest Bessel function ob- 
served in the diffraction pattern. 

11.3. An interpretation of m 

These considerations serve to show that the conven- 
tional description of a helical structure adopted in the 
first section as u units repeating in t turns of one helix 
is not necessarily the most illuminating. It is probably 
the simplest to imagine geometrically*. We have called 
it the basic helix since it leads to a very simple inter- 
pretation of the integer m, occurring in the selection 
rule (2) and characterizing the various ‘branches’ of 
the diffraction pattern. 

The equation to the basic helix is 

r = constant, q-2322/P = 0. 

This is a member of a space-filling family of helices 
all of the same pitch P, defined by 

r = constant, cp-2n4P = constant = 9)‘, say. 

Now we can imagine a helix passing through each 
atom, and can fix the position of each atom by a new 
set of co-ordinates, namely the azimuth v’ of the helix 
passing through it, and the fraction of the helix screw 
measured along the helix. That is, we make the co- 
ordination transformation 

* Note that our basic helix corresponds to one of the two 
‘genetic helices’ of Bear (1955). The choice above ia that having 
the greater pitch or smaller distance between equivalent 
points along the helix. 
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rj = r, , 
vi = ~j-ZZ.Zj/P ) 

I 

(8) 
ctj = 243. 

Then the phase factor determining the contribution of 
the jth atom to J,, on the lth layer line becomes 

= exp [i(+ + 2&P) +2&,/c)] 

= exp i 
H  

-++ 7 (dg)}] , 

and using equation (2), 

= exp [i(- nq$ + mq)] . (9) 

We thus see that m  has the meaning of an index for 
translational periodicity along the basic helix, just aa 
1 is an index for translational periodicity along the z 
axis and n for rotational periodicity. The ‘gearing’ of 
translation and rotation in a helical screw is expressed 
by a linear relation between n, 1 and m, namely equa- 
tion (2)*. We can use any two of three integers n, 1 
and m to describe the diffraction pattern and the helix 
net ; the pair (n, E) will usually be the most convenient. 

111.1. Helical projections 
In $ 11.1 we showed how the radial projection of a 
structure might be used to estimate for a particular 
value of R the value of the various Bessel function 
terms G,,(R) corresponding to the sets of sinusoidal 
density wave8 (n, I). When the atoms are not all at one 
radius the weights J,(ZzRr) to be attached to the dif- 
ferent atoms do not all vary at the same rate with R. 
The procedure would accordingly be rather heavy, 
and it may be much more convenient to fix our 
attention on one Bessel function term G,,(R) at a 
time. In this section we shall show that it is then more 
useful to construct a special two-dimensional projec- 
tion related to the particular (n, 1) term being con- 
sidered. 

From the relation between G,,,(R) and the (n, I) 
set of waves in the radial projection, discussed in 8 II, 
it is clear that the translation of each atom in a direc- 
tion parallel to the zero lines of the wave has no 
effect on G,,,(R). This suggests, that, in considering 
one Bessel function term G,l(R), we may project the 
atoms parallel to the (n, E) zero lines; we shall denote 
this direction by (n, E). In three dimensions this 
procedure corresponds to projecting the structure 
down a corresponding set (n, 1) of helices. The con- 
struction of such maps of the structure W M  first 
proposed by Crick (1953), who called them he&d 
projections and pointed out that the (n, E) helical 
projection offered a quick method of estimating the 
effect of the phase factor in the mathematical ex- 
pression for G,,,(R). Such a projection will be useful, 

* From the point of view of f 11.1, m  gives the number of 
intercepts thet the set of lines (n, 1) makes on the set of lines 
(1, t) corresponding to the basic helix. 

when only one Bessel function effectively contributes 
to a layer line we wish to consider. This will happen 
when the other possible Bessel terms on the layer line 
are either of too high an order, or else lie slightly off 
the layer line, as in the case of a structure which does 
not, repeat exactly in the distance c after a whole 
number of turns. 

We may restate this idea mathematically as follows. 
When only one Bessel function is relevant, the scat- 
tered amplitude on the layer line 1 is given by 

= T,fiJn(2~R~i) exp [i(n(vl+)n)-~j+2fflzjlcl] 

= b&9 exp [Wy+ib)l , (10) 

where G,,(R) is defined by equation (6). 
Let us for the moment restrict ourselves to the cases 

n + 0 and 1 + 0. Then if there are two atoms with 
cylindrical co-ordinates (rl, vl, ZJ and (r2, Q)~, z2) such 
that 

-np,,+2n(Z/c)z, = -np,+2n(Z/c)z,, 1 
r1 = rs , I 

then, apart from the atomic scattering factor, their 
contributions to the above sum will be equal for all 
values of R and p. Thus if we project the ent,ire struc- 
ture along lines defined by the relations 

-q+2n(l/nc)z = con&, r = const. , (11) 

the pattern we obtain is uniquely related to the 
structure factor given by equation (10). 

Equation (11) defines a space-filling family of helices 
each having a pitch nc/l. If one projects all the atoms 
by moving them along the appropriate helices of this 
set,, one obtains the helical projection along (n, 1). We 
may draw the projection either on the horizontal plane 
z = 0 or the vertical plane p = 0. In Fig. 5 we have 
drawn the helical projection along (3, -1) of an 
example similar to that discussed in the last section 
and shown in Fig. 4, but where the atoms are now to 
be considered as lying at various radii. For definiteness, 
we shall henceforth consider only the projection on to 
z = 0, which hes the form of R two-dimensional map 
in which the jth atom of the first asymmetric unit of 
structure has the polar co-ordinates: 

ri, vi = qi-22n(Z/nc)Zj. (12) 

Now we have shown in $ II that in a radial projec- 
tion the (n, I) lines make n intercepta on the horizontal 
axis. Accordingly, if one travels round the (n, I) 
helical pojection, keeping at a constant radius, the 
variations in projected electron density will, in general, 
repeat n times in one complete revolution, i.e. the 
pattern will have n-fold rotational symmetry. This 
pattern can then be considered as made up of a number 
of angular Fourier components of frequency 0, kn, 
+2n, , . ., *hn, . . ., where h is an integer. Now con- 
sider one of these angular components, the (hn)th, say. 
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Fig. 5. The helical projection in the (3, - 1) direction of the hypothetical structure of Fig. 4 plotted (a) in the z = 0 plane, 
(6) in the (p = 0 plane. The direction of projection is indicated by dotted lines in Fig. 4. 

It is a two-dimensional pattern with (&)-fold rota- 
tional symmetry, and it can be shown (see $ IV.2 
below) that its two-dimensional Fourier transform is 
identical with the term G,,,.(R) exp [inh(q~+&r)], 
that is, with the structure factor on the (hZ)th layer 
line. 

We thus see that a Fourier analysis of this single 
projection would lead to the whole set of terms 
G,,,,,(R), h being any integer as before. We might 
well have expected all these terms to be involved since 
the direction of the (n, I) helical projection is deter- 
mined only by the ratio of n and 1, the pitch of the 
helix being ncll. It is in this sense that we may think 
of the term G,,,,,,(R) as the hth order of G,,,(R). If 
the helical projection has a large (hn)-fold lumpiness, 
we can see at once that the layer line hl will have 
strong X-ray intensities on it. Alternatively, if its 
(hn)th angular Fourier component is weak, the X-ray 
intensities will be weak or absent. 

Note that it is not necessary to project the whole 
structure. It is clear from the manner of derivation 
that one need only project one asymmetric unit along 
the reIevant helix on to plane z = 0 and then operate 
on this limited projection with an n-fold rotation to 
produce the entire helical projection. It is the fact 
that only one asymmetric unit needs to be projected 
that makes the method useful. 

Fig. 6. The +, n$ plot corresponding to Fig. 5(a). Note that 
in this example atoms 1 and 3 have phases differing nearly 
by IC. 

The fact that we need only project one unit also 
leads to another useful kind of plot if we wish to con- 
sider each of the G,,n,II terms separately. Consider, for 
instance, the Bessel term G,,!. The phase angle for 
each atom is ny;, where (pi is given by equation (12) 
and is the angular co-ordinate in the helical projection. 
Hence if we project one asymmetric unit and plot it 
on n times the angular scale we shall have a plot 
showing the radius and the phase angle of each atom. 
An example is shown in Fig. 6, where we have con- 
structed the plot corresponding to the term G,,-,(R) 
for the hypothetical structure of Fig. 4. Lumping’ 
together atoms at approximately the same radius, we 
see that in the example the phase angles of atoms 1 
and 3 differ by a value close to 3t, and we can thus 
expect that their contributions to the Bessel term will 
almost cancel. Thus this kind of plot might be useful 
when one is moving atoms about in building a trial 
structure for a substance. Future experienoe may show 
whether this direct phase plot is any more useful than 
the actual helical projection, since the latter in prin- 
ciple contains not only G,,* but all the higher order 
G  hn. Bl. 

For completeness, we should add that so far we have 
considered only cases where n + 0 and 1 + 0. When 
I = 0 we get the usual projection parallel to the z axis. 
When n = 0, I + 0 the helices degenerate into circles 
perpendicular to the z axis, in which case it would be 
more useful to consider the projection on to the 
97 = 0 plane. Indeed, for a cylindrical, as distinct from 
a helical structure, these are the only projections of 
this kind possible (see Whittaker, 1955)*. 

We must also deal briefly with the other helical line 

* By s, cylindrical structure is usudly meant one in which 
the helical screw haa degenerated into a pure translation, but 
an N-fold rotation axis remains (tr in the notation of 5 I). 
The general diffraction theory given here and in C.C.V. is 
still valid, but in this case the same orders of Bessel functions 
occur on all layer lines, i.e. the helix net and (n, I) plot are 
rectangular arrays. Cylindrical lattices are discussed briefly in 
f VI at the end. 



208 DIFFRACTION BY HELICAL STRUCTURES 

groups. When there is an N-fold parallel rotation axis, 
the helical projection along (n, I) will have &~-fold 
rotational symmetry, instead of the straightforward 
n-fold symmetry of the simplest helical line group s. 
The effect of perpendicular dyads on the (n, 1) helical 
projection is to add radial mirror reflexion lines, i.e. 
to increase the symmetry from C, to C,,. The G,,,,(R) 
terms will then be real rather than complex (see equa- 
tions (3) and (7)), but the helical projection itself will 
have a centre of symmetry only when 71 is even. 

111.2. An application of heIica1 projections to 
disordered structures 

It sometimes happens that we have helical molecules 
or polymers arranged as in a crystal lattice but with 
a disorder consisting of a variable displacement of the 
molecules along their axes or a variable rotation about 
their axes. It is also possible to have-although this 
has not been often recognized-a combination of both, 
i.e. a variable screw. In such csses the overall crystal- 
linity of the arrangement will be destroyed and the 
diffraction pattern wili correspond to the continuous 
transform of the molecule, but some parts of the X-ray 
diagram will still correspond to diffraction by a crystal. 
For if the disorder consists of a screw (taking the most 
general case) in the direction determined by the family 
of helices (n, E) (using our previous notation), the 
helical projection of the structure along (n, I) will be 
unchanged. Hence in reciprocal space the correspond- 
ing set of Bessel terms G,,n,hl(R), h an integer, will be 
unaffected by disordering, and so, as far as these 
parts of the diffraction pattern are concerned, the 
scattering from different molecules is coherent. Thus 
the corresponding parts of the X-ray diagram will 
resemble diffraction by a crystal and show sharp 
reflexions. 

An analysis of this kind, but without using the 
terminology of helical projections, has been given by 
Franklin & Klug (1956) for diffraction by dry tobacco 
mosaic virus, where the rod-shaped virus particles 
pack together in an hexagonal arrangement and are 
interlocked by helical grooves. The original paper 
should be consulted for further details. 

Another example of disorder where this type of 
analysis should be applicable is to be found in the 
transition at 20” C. reported by Bunn BE Howells 
(1954) in their X-ray study of the polymer, polytetra- 
fluoroethylene. The fact that the reflexions corre- 
sponding to the Jo and J, parts of the molecular trans- 
form remain sharp suggests that the disordering in- 
volves a screw motion along the basic helices. 

A simpler type of disorder involving only axial dis- 
placements, has been found in the case of deoxyri- 
bonucleic acid by Wyckoff (1955). 

IV. Fourier syntheses of electron density 
In general the X-ray photographs that can be ob- 
tained from a helical structure are fibre diagrams. 

These will often be of poor quality compared with 
X-ray photographs of single crystals, and the only 
method we have of testing a proposed structure is to 
compare observed and calculated intensities (see Crick 
(1954) for further discussion of these points). How- 
ever, there are instances, notably in the cases of 
tobacco mosaic virus and deoxyribonucleic acid, 
where the quality of the photographs is high, and ac- 
cordingly, by analogy with single-crystal work, the 
question arises of calculating the clcotron density from 
the scattered amplitude. We shall, therefore, now 
discuss the problem of Fourier inversion in tbree- 
dimensional cylindrical co-ordinates. The further 
question of whether there is a useful analogue of the 
Patterson function will be dealt with in a later section. 

IV.1. The three-dimensional Fourier synthesis 
Suppose that the phases have been determined for at 
least some of the accessible structure-factor terms 
G,,,,(R) either by trial or otherwise (e.g. isomorphous 
replacement, as in tobacco mosaic virus (Franklin, 
1957)), and we wish to use them with the observed 
moduli to calculate the electron density. 

It is convenient to assume a continuous electron 
density e(r, pl, z), find its Fourier transform, and then 
show how this may be inverted again. In so doing we 
shall re-derive in a very general way the basic result 
of C.C.V. 

Since the electron density e is periodic in q~ and in 
z we may expand it in the form of a double Fourier 
series 

e(r, q4 4 = f , H  ~~-a.l(r)exp[i(pzg-2~Zz/c)] I (13) M  s 

where the g, I (r) are, in general, complex functions of r. 
They are the obvious generalizations of ordinary two- 
dimensional Fourier coefficients and are given by 

1 c 2n 
g,,,(r) = %kolo FC e(r, v, 4 

x exp [-i(ng,-ZnZz/c)]dg?dz . (13a) 

The Fourier transform of e is 

WC yj 5‘) = 5: sf ~;e(rs ~1s 4 

x exp [2ni{Rr cos (I-y)t{z}]rdr~dz . 

Substituting from (13), we find, as we expect, that the 
integra.1 over z will be non-zero only when 5 = Z/c, i.e. 
that the scattering is confined to layer planes. On any 
one layer plane Z we then have 

F(R yY, W  

= 
SF 

2 g,t,l(r) exp (inp) exp [27riRr cos (IJI-y)]rdrdg, 
. ,I 
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where we have used in the last step the integral 
representation of the Bessel function 

s 

273 
27cPJ, (2) = exp [;(z co8 ~1 +n~]] dp, . (15) 

0 

In keeping with our previous notation, we write 
(14) as 

WC y, Vc) = 2 G,,lW exp [Wy+&d] , (144 
n 

where, now, 

= 

sss 
e (~9 p, 4 J, (23-W 

x exp [i( -n~+2nlz/c)]rdrd$z (164 
(cf. (6)) . 

Note that this analysis is perfectly general and we 
have nowhere used the fact that we are dealing with 
a helix; in general, all the g,,I(r) terms will occur in 
equation (13), and hence, of course, all G,,*(R) will 
also occur. However, when the structure has helical 
or cylindrioa1 symmetry, some of the gn 1(r) terms will 
vanish. The values of n and I for which the g,,r(r) 
remain non-zero may be found very simply by con- 
sidering the radial projection of the structure (see 
the remarks at the end of 5 IV.3 below). The effect of 
the symmetry is to reduce the size of the asymmetric 
unit, and indeed it is easily shown that only those 
gn,I(r) occur which obey the selection rule (2).* In the 
case of the helical line groups with rotation axes and 
perpendicular dyads there will, of course, be additional 
restrictions on n and 1, as already discussed in $ I. 

With these restrictions on n and 1, we now recognize 
equations (14a) and (16) as the rather obvious exten- 
sion of equations (1) and (6) to the case of a continuous 
density distribution. Our derivation has, however, 
been such that we can easily find the inverse trans- 
form. By the Fourier-Bessel inversion theorem (Titch- 
marsh, 1937) it follows from equation (16) that 

sL,l(~) = 
s 

*Gn,l (R)J,,(2lcRr)2nRdR . (17) 
0 

We use this equation (17) to obtain the g,,!(r), and 
then finally evaluate the Fourier aynthem, using 
equation (13). 

It wiIl now be clear that to make the Fourier syn- 
thesis of electron density we need to know the in- 
dividual G,,(R). If one were using, for instance, the 
method of ‘komorphous replacement one would have 
to separate the various terms in a region of R where 
two or more G,,l overlapped on the same layer line. 

* The diffraction pattern of a condkuous helix may be 
derived from this point of view. by considering it as the 
limiting ease of a discrete helix with an infinite number of 
units per turn. It is then obvious that onIy the branch m  = 0 
occurs. 

AC11 

Although it seems impossible to use in practice, 
we might note, for completeness, that if we knew only 
the resultant modulus and phase along a layer line, 
that is, if we have F(R, 0,Z) = X G,,,(R), we would 

be able to determine the individua; G,, 1 (R) by Fourier- 
Bessel analysis. One would use the ‘property of the 
orthogonality of Bessel functions of different order 

s 
J,(2nRr)Jp(2nRr’)2nRdR = 0, if n =t= p. (18) 

Further, if n = p, the integral vanishes unless r = T’. 
Hence an individual gn,l (r) is given by the J, trans- 
form of the scattered amplitude on a layer line. For- 
mally 

gn,r(r) = 
s 

F(R, 0, E)J,(BnRr)2nRdR . (19) 

Ideally, the J,, transform would be non-zero only for 
those n obeying the selection rule (2). Indeed, if we 
knew the phase along a layer line, we could discover 
the helix net, i.e. the values of u and t in equation (2), 
by evaluating Bessel transforms of different orders 
for a number of layer lines in turn and noting those 
that do not vanish. 

IV.2. Fourier synthesis of a helical projection 
When we construct a helical projection along (n, I) we 
obtain in the (r, p’) plane (see equation (12)) a two- 
dimensional density distribution having n-fold sym- 
metry, which we shall denote by e(r, a’). Then the 
expression (16~~) for the corresponding terms Gn,,n (R), 
where h is, as before, any positive or negative integer, 
may be written as 

mza 
G/an, hl (R) = FS 

u(r, $1 J, (2nRr) 
10 0 

x exp (-ihn@)rdrdp’. (20) 

Now we can expand a(r, p’) in terms of its angular 
components 

4r, fp’) = + yk P) exp WJ’), 

k=O,fn,&2n ,..., fhn ,..., (21) 
where 

yk(r) = 
s 

u(r, tp’) exp (-ikp’)d# . (22) 

The two-dimensional transform of one of these angular 
components ylur exp (ihnp’) is 

Fhn (3, y) = sr $:yhn @) exp @v’) 

x exp [SniRr cos (q’-y)]rdt+’ 

= exp [ihn(y + $z)] i Yhn (r) J, (%zR@nrdr 

= % ,dR) exp [Wy+Wl s (23) 
15 
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since it follows from (22) and (20) that 

G, M  (R) = 
s 

y,,,, (r) J,, (27&r) 2mdr . (24) 

Thus we have proved the statement made in 5 III 
that the Bessel function term G,,, on the Ith layer 
line is the transform of the nth angular component of 
the helioal projection down (n, I), G%,,, on the 21th 
layer line is the transform of the 2nth oomponent, 
and so on. 

Note that, by comparing the right-hand sides of 
equations (24) and (M), we can identify m(r) (for 
a particular pair (n, I)) with gn,r(T), thus establish- 
ing the connection between the full three-dimensional 
Fourier synthesis and the limited synthesis of a helical 
projection. Indeed, the y,, required for the helical 
projeation are to be found in exactly the same way 
as in the three-dimensional case, since by inversion of 
equation (24) : 

yhn (‘-) = s Ghn, t,i (W J, k~‘-) 27&f ci3 . (25) 

Equations (25) and (21) between them show us how 
to construct the helically projected electron density, 
if we know the relevant set of G,,,(R). A synthesis 
of this kind is being aarried out for tobacco mosaic 
virus by Dr R. E. Franklin (private communication), 
using a limited number of G,,, whose phases have 
been determined by isomorphous replacement. The 
particular value of such a procedure in a substance as 
complex as tobacco mosaic virus is that a single, 
appropriately chosen, helical projection can be used to 
show up certain speoific features of the structure. 

It m ight be helpful to give a concrete example of 
the form taken by the gn,z(r) in a simple case. Since 
gn, 1 @I = m(r) of the helical projection (n, E), we see 
that, in our example in Fig. 5, we would have, for the 
case of point atoms, 

gs,i(r) = &r-r,) exp [-i3&3+S(r-r,)exp [-i3&l 
+&r--r,) exp [-i39$], 

ge,i(r) = &P--P-J exp [--iS&+b(~--7& exp [-i6gra 
+d(r-r,) exp [-iS&] , 

and so on, where 6(z) is a oyl.inclrical6 function defined 

by 

S f(46(s-q))2nukT = f(q) . 

This form for g,,,(r) may be checked by substituting 
it in equation (16), to obtain, for example, 

s 

cm 1 
0 

J,,(2nRr)dr = m  , 

Gs,i(R) = f J,,(%&Y~) exp [-iSa);] 

= 2 Jn(2kRTj) 0XP [i(-3vj+kf/~)] 9 
i usins (153, 

and hence the coefficients A,1 are given by the fol- 
lowing integral in reciprocal spaoe: 

Aqz = ‘=G,,,,(R)dR . 
s 0 

(30) 

which is the correct result. 
For real atoms, the S functions must be replaced by 

The similarity between equations (28) and (30) is very 
striking. 

say, Gaussians, and the expression for G,,,(R) will 
correspondingly contain the atomio scattering factors. 

IV.3. The radial projection 
It is possible to derive equations for constructing a 
Fourier synthesis of the radial projeotion of a struc- 
ture, as defined in $ I. However, they turn out to be 
very cumbersome md not particularly useful and we 
shall not reproduoe them here. In dealing with con- 
tinuous distributions of density, it is much more 
illuminating mathematically to derive results, not for 
the true radial projection 

erkp, 4 = S e(r, p, ZW, 

but for a related function 

(264 

which is a radial projection of the density weighted by 
l/r. Because of its physical significance and the 
ensuing mathematical simplicity, it is this ‘de- 
weighted’ projection which we shall refer to in this 
section simply as the radial projection. Note that it 
corresponds to a superposition of the density in various 
cylindrical shells of the structure, all drawn out to the 
same linear dimensions without regard to radius. 

Substituting from (13) into (26b), we obtain 

e&p, 4 = 
s 

f+exp ring,-2aaZz/c]g,,,(T)dr 

(27) 

This is an ordinary two-dimensiona Fourier series with 
constant coefficients A,, given by 

The A,,r can also be expressed in terms of reciprocal- 
space quantities by using (17) to obtain 

41 = 
ss 

G,,(R) J,, (2nRr)B~cRdRdr . 

The double integral may be reduced by interchanging 
the order of integration and using the result 
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Aa a concrete example, we note that if we have two 
point atoms of weights 2, and ZB at different radii 
rr and ra, but with the same ‘p and z co-ordinates, 
q+ and 4, then 

A,, = (2,/27~~+2,/2nr,) exp [i( -nyj+2nZzj/c)] . 

Equations (26b) and (27) show how to make a 
Fourier synthesis of a radial projection from the dif- 
fraction data. But since the determination of the 
Fourier coefficients A,,I would seem to require prior 
knowledge of the whole course of G,,,(R) as a function 
of R, it would be more realistic to construct the full 
three-dimensional electron density. If there were some 
simple means of estimating, say, the average value of 
G,,(R), then this synthesis might prove very valuable 
indeed. 

We have included it here chiefly because it brings 
out, in an instructive way, how the g,,!(r) of the full 
three-dimensional atruoture reduce to simple Fourier 
coefficients A,,L in the radial projection. The selection 
rule (2) relating n and &which, as we have seen, is 
what characterizes a helical structure-will be un- 
changed by the projection. We can thus conveniently 
use the radia1 projection for discussion of helica1 sym- 
metry, as has been done in 5 IV.1. 

V. The Patterson function of a helical projection 
We shall now consider what information may be ob- 
tained directly from the intensities, when we have no 
knowledge of the phases. If we had three-dimensional 
data we could of course construct the Patterson func- 
tion, but, as mentioned earlier, the only data we 
usually have is from a fibre diagram. From this the 
cylindrically averaged Patterson function may be 
calculated (MacGilIavry & Bruins, 1948) in a perfectIy 
general way that makes no use of any helical features 
that might be present in the structure. 

The question naturally arises : if we know the helical 
symmetry, as expressed, say, by the selection ruIe (2), 
can we do anything better? We shall now show that 
if one can determine the separate intensity contribu- 
tions G;,,(R)* it is possible to construct certain maps 
related to the Patterson of a helical projection. To 
avoid the cumbersome convolution integrals that 
would arise for a continuous density distribution, we 
revert to the case of discrete atoms. 

Now it has been shown by Franklin & Klug (1955) 
that the cylindrically averaged intensity along a layer 
he is given by 

($‘“(R, ,+J, z/c)), = : j$ J,,PnW Jn(2’%) 

* Strictly, this should be written jQ,,l(lZ)I*, since B is, in 
general, complex. 

in our notation. Essentially this means that, in a fibre 
diagram, Bessel functions of different order effectively 
do not interfere, and indeed they may even lie at 
slightly different levels, as has been found in the case 
of tobacco mosaic virus. Let us fix our attention on 
one term G:,,(R) (or rather-as it will turn out-the 
set of terms G&,(R)) and consider how the corre- 
sponding helical projection is related to it. We shall 
now derive a relation between G:,,(R), and the Pat- 
terson of the helical projection along (n, 1). 

Fig. 7. 

Fig. 7 is intended to represent two non-equivalent 
atoms 1 and 2 in the projection and the vector r12 
between them. To construct the Patterson we simply 
place the vector rIz at the origin of r, v’ co-ordinates 
in Patterson space. To relate Ir,,l to r, and r, we 
require the addition theorem for Bessel functions 
(see, for instance, Stratton, 1941) which states that 

J,(k,) = 2 JkVdJk(h) exp [W&-~21 . (32) 
k--co 

Now, in the helical projection, for any one atom there 
will be another (n-l) equivalent ones at the same 
radius, successive atoms being separated by an angle 
2n/n. Hence if we sum equation (32) over the set 2 
of atoms, we obtain 

This equation will hoId for any choice of atom out of 
the set 1. Hence, summing over the set 1, we get 

2s 25 JOGJ~,,) 
set1 set2 

=n E Jk W Jk WA exp [Wk--~~)l. k-0, *?I, *!a,. . . 
Finally, summing over all the pairs of atoms in the 
asymmetric unit, we obtain 

= 2 2 Jk(Art) Jk%j) exp [WP~-FAI~ (33) 
t-a,*n,... fj 

Now, in terms of the co-ordinates r, p’ (see equation 
158 
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(12)) of the helical projection along (n, I), G,,, as de- 
fined by equation (6) is to be written as 

G,,,r = 2fr J, (27rRrj) exp [ -+,‘I . 
i 

Hence, if we put I = 27zR and insert factors fifi, 
equation (33) can be written as 

; T +fifjJoWri,) 
I 

= G~,,(R)+ZG~,,(R)+2G~,.(R)+. . . , (34) 

which shows that the J,, transform of the Patterson 
of a helical projection is equal to the sum of the 
squares of the set of G,.nr corresponding to that 
projection. We thus have proved an analogue of 
Parseval’s theorem. Since a J,, transform has cylin- 
drical symmetry, we can express our result formally 
as follows. If P&Jr, p7’) represents the Patterson 
density of the helical projection, and 

and we might hope to use the latter in the same way 
to obtain results involving Pn,l(r, pl) rather than 
Pqr(7). But we see at once that (38) involves products 
of Bessel functions of different order and such terms 
occur only in the expression for the full diffracted 
intensity Fa(R, w, l/c) before the cylindrical averaging. 
Indeed, from the point of view of diffraction theory, 
equation (38) is nothing but the expression (in 
cylindrical co-ordinates) of the perfectly general result 
that the Fourier transform of the Patterson is the 
intensity distribution. 

It thus appears that equation (37) represents all we 
can hope to learn from the cylindrically averaged 
intensity alone. 

VI. Cylindrical lattices 

%(7) = &pLJ(7, do 
0 

n =- 
s 

h/n 

bcr o P,,,L (7sv') w (35) 

is its rotational average, then 

s 

Q)- 
Pn,z(p’)Jo(2zRv)2mdr = 2 Gn,,(R) . (36) 

0 h=O,*l,f2,... 

Inverting, we obtain 

It is interesting to note that the theory given in this 
paper bears a certain resemblance to that in recent 
papers on cylindrical lattices by Whittaker, Waser 
(1955) and Kunze & Jagodzinski (for references, see 
Whittaker, 1955). There is, however, very little in 
common apart from the mathematics of Bessel func- 
tions. A cylindrical lattice is made up of concentric 
cylindrical sheets of crystal-like unit cells, and the 
angular separation between asymmetric units is very 
small compared with the radius of the cylinder. In 
other words, Bessel functions of very high order are 
involved, and the approximation 

&J(7) = m 
s-i 

.Z G:,,.(R) J,(ZnRr)ZnRdR, (37) 
0 n-0,+1,... 1 

which is the desired relation. 

J,t (4 - ((2) - co9 (5 - lpm- &z) 

It is too early to say whether (37) will prove to be 
useful. It is easy to show that the rF,,Jr) curve will 
contain a rather broad peak near 2r when there is a 
concentration of density at the radius P in the helical 
projection. It will thus reveal the radial limits of a 
structure, but it is not superior in this respect to the 
cylindrical Patterson. We have tried out equation (37) 
for the a-helix, using the intensities calculated by 
Pauling, Corey, Yakel & Marsh (1955) to evaluate* 
the rotationally averaged Patterson of the helical 
projection down the basic hehx (1,s). The resulting 
curve was, however, not easily interpretable in terms 
of the individual Patterson vectors. 

may be introduced, resulting in structure factors of 
the usual trigonometric form applicable to three- 
dimensional lattices. The analogues of our Gn,l(R) 
extend over very short distances in reciprocal space 
and may be considered as broadened crystal reflexions. 
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